Y]

Jour. Ind. Soc. Ag. Statistics
49 (Golden Jub. No.), 1996-97 : 167-176

D-Optimal Design Measures for Parallel Line Assays with
Application to Exact Designs

Rahul Mukerjee
Indian Institute of Management, Calcutta, India

SUMMARY
D-optimal design measures are derived for symmetric parallel line assays.
These lead to exact designs, with very high D-efficiency, both in the absence
and presence of blocks and entail gain in D- efficiency compared to. the
more conventional-equireplicate designs.
Key words :. Approximate théory, Efficiency, Non-equireplicate design.

1. Introduction

The efficiency designing of parallel line assays, taking due care of the
contrasts of interest has received considerable attention in the literature; see
Finney [2} for early results and an elegant discussion and Gupta and
Mukerjee [5] for an account of the more recent developments. Interesting results
on efficient equireplicate designs were reported among others by Das and
Kulkarni [1], Kyi Win and Dey [7], Nigam and Boopathy [9], Gupta, Nigam
and Puri [6] and Gupta [3]: Gupta and Mukerjee [4] attempted to unify these
results to some extent.

A review of the literature shows that designs proposed so far for parallel
line assays are mostly equireplicate. Such designs cannot be used when the
number, n, of experimental units is not an integral multiple of the number, v,
of treatments. Moreover, as noted in Mukerjee and Gupta [8], even when n/v
is an integer, a non-equireplicate design can be more efficient than the best
equireplicate design for estimating the contrasts of interest. ' These authors
worked with the A-criterion and posed an open problem concerning the
development of efficient designs under other criteria.

In the present paper, consider the D-criterion and, as in Mukerjee and
Gupta (8], allow the competing class of designs to inciude equireplicate as well
as non-equireplicate designs. Note that the D-criterion is invariant of the scaling
of the treatment contrasts of interest and, therefore, in a sense more appealing
than the A-criterion. However, in the present context, the exact D-optimal design
problem is far more intractable than the corresponding A-optimal design
problem. This is because, as one can demonstrate via examples, a counterpart
of the crucial Lemma 2.1 of Mukerjee and Gupta is not available under the
D-criterion. As such, unlike what happens with the A-criterion, even in the
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absence of blocks, the non-linear integer programming problem associated with
the D-criterion (see 2.3 below) cannot in general be reduced to one involving
fewer variables. In Section 2, one can observe that considerable simplification

is possible taking recourse to the approximate theory. This yields D-optimal _

design measures which can, in turn, lead to exact designs with very high
D-efficiency both in the absence and presence of blocks. A method for
constructing D-efficient block designs via the approximate theory has been
presented in Section 3. Just as with the A-criterion, our D-efficient designs
are often non- equireplicate. It may also be noted with satisfaction that they
tend to perform nicely under the A-criterion as well.

2. The Approximate Theory

Consider a symmetric parallel line bioassay experiment involving two
preparations, standard and test, each at m (>2) equispaced doses. Let these
v(=2m) treatments be coded as 1, 2, ..., 2m and let 7=(1,,..,7,) be the
vector of treatment effects where 7; and 7, ; denote the effects of the ith
dose of the standard and test preparation respectively. As happens in most
practical situations, suppose interest lies in the preparation contrast, the
combined regression contrast and the parallelism contrast given respectlvely
by m; 7, n2 7 and ©5 7, where

=y, -1y), ny = (&' ¢), ny= (e’ —=') @D

with e = f——;—(m+ 1)1, f=(1,2,..,m) and 1, representing the m x 1 vector

with each element unity. Let P be a 3xv matrix defined as

L I, -1
P = 1t'2 = e’ e' (2'2)
nls e/ _el
By (2.1) and (2.2) , P 7 represents the contrasts of interest. Let Pis «oos by denote

the columns of P.

First consider an unblocked set-up with n experimental units. For .

I<i<v, let r; be the replication number of the ith treatment, where
Iy, ..., T, are positive integers satisfying r; +...+r,=0. We require all the
1;’s to be positive to ensure the estimability of P7. As usual, the errors are
assumed to be uncorrelated and homoscedashc with common variance 0. Then
it 1s easy to see that Disp (P T) = o*PR™! P’, where R = diag (r, ...,1,) and
P 7 is the best linear unbiased estimator of P 7 in the design under consideration.

—t
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The exact D-optimal design problem in the unblocked case can, therefore, be
formulated as

minimize | PR™' P’ | subjectto r;+...+1,=n (2.3)
where 1y, ..., T, are positive integers.

As noted earlier, this exact problem, which réquines non-linear integer
programming, is intractable even for moderately large n and v. Considerable
simplification is achieved if one takes recourse to the approximate theory, writes
x; =1,/n (1< i < v) and allows x = (x, ..., X,)’ to vary continuously in the
set T = {x:x +...+%x, = 1, x;>0,..,x,>0} (cf. Silvey [10]). This leads
to a continuous version of the problem (2.3) where, writing
X =diag (x|, .., X,), one has to minimize PX'P, or equivalently
f(x) = log IPX'P’l, over x€ T, to get a D-optimal design measure.

Now, f(x) is strictly convex over T and tends to + o along any x-sequence
converging to a point in T—T where T is the closure of T. Hence there exists
a unique point, say x" = (x], ..., %), in T where the minimum of f(x), over
x €T, is attained. Using the Lagrangian method, x* is given by the unique
stationary point of the strictly convex function £ (x)=f(x)+ A(x; + ... +X,),

where the constant A is so chosen that x) +...+x, = 1. Since
A ()/3x; = —x; 2 p; X 'PY Ip+d, 1<i<y

it follows that the poinTx', representing the D-optimal design-measure, is given
by the unique solution in T of the system of equations

= —p; X 'P)'p, 1<i<y (2.9)

1
3

R
in agreement with the findings in Mukerjee and Gupta [8] under the
Hereafter, consider m >3 and, separately for even and odd m, explore how
(2.4) can be simplified via a reduction in the number of variables.

In particular, if m=2 then by (2.2) and (2.9), x" = 111 lJ which is

-criterion.

2.1 Case of even m

Letm=2t, t22. Let Ri={y = (y},-., ¥): ¥, >0,..., %, >0 } and for
y &R, define

e ®=% v &®W= vy 0—§<m+1)>2 (2.5)
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Lemma 1. The system of equations
1 - a,. 1 . .
y}=§[<g1<y)> L 2{n ) -y me D Y] 1SSt

(2.6)

has a unique solution in R,.
Proof. Let g(y) = log g, (y) +2log g, (y)+12%;_, y;, y € R,. Then g(y)
is strictly convex over R, and there is a unique point in R, where the minimum

of g(y), over y € R,, is attained. Consequently, g(y) has a unique stationary point
in R,. The result now follows considering the partial derivatives of g(y).

Theorem 1. Let y"=(y},...,y;) be the unique solution of (2.6) in R,
Then the vector

X= (Y] coe s Yer Yoo v Yo Yo oo Yoo Yoo vy Q.7

with v (= 4t) elements, belongs to T and represents the D-optimal design
measure for the estimation of P 7.

Proof. Since y* solves (2.6), replacing y by y" in (2.6),
LI L -~ ] =1 2 LI | . l 1 2
i = 700 Ha )y +2{g ) {i-7m+D Y]
1<jst

and, in view of (2.5), summing the above over j, y} + ... +y: =%. Hence by

(2.7), x* € T. It remains to show that x" satisfies (2.4).

To that effect, write x™ = (x], ..., X)), P;=Py; P2i» P3j)» 1 £i<v, and
define the sets S;={j, m+1-j, m + j, 2m+1-j}, 1<j<t, which provide a
disjoint partitioning of {1,..,v }. Then by (2.2) and (2.7), for 1<i<v,

’ .1 o -
=1, Pyi=ph= (-3 if ieS (2.8)

xi' = y} if iSSj 2.9)

Let X* be a vxv diagonal matrix with diagonal entries given by the elements
of x*. Then by (2.2), (2.5) and (2.7), after some algebra,
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P XY 'P = 4diag [g, (¥, 820" 8, (9]

Hence by (2.8), if i€ S; then

L (P P =g (8 00 4200 (-5 me DY)
(2.10)

Since y* solves (2.6), it follows from (2.9) and (2.10) that x" solves (2.4).

Remark 1. For even m, Theorem 1 considerably simplifies the derivation
of the D-optimal design measure. Instead of (2.4), one needs to consider the

system of equations (2.6) involving only t=-‘1iv variables. We solved (2.6)

iteratively for t=2,3,4,5 (e, v = 8, 12, 16, 20) starting with the initial choice
y;= (4!, 1<j<t The solution y*=(yj,...,¥;), yielding the D-optimal
design measure, has been shown in Table 1 for t=2,3,4,5 (ie., v = 8, 12,
16, 20). :

2.2 Case of odd m
Let m = 2t+1, t 2 1. Let

Ry = {y=yg, Y - ¥ Y0 > 0,¥1>0, ..oy y>0 ) -
and for y e Ry,,, define
1 _ - ., 1
by )=5% + T ¥ W=y (j-35 @Dy

Lemma 2. The system of equations

V=15 (b))
1 - ' a,. 1 .
V=13 [ )Y +2{h )" {j-5 mD) Y], 15j<t
' (2.11)

has a unique solution in Ry,,.

Proof. Follows along the line of proof of Lemma 1 now considering the
function h (y)=log b, (y) + 2 log h, (y) + 6yp+ 12Zi; ¥;, YERy
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Table 1. D-optimal design measures

v Yo " Y2 ¥ Ya 2

00892 02054 - - - -

- - 01652 - 00848 - - - -

10 00542  0.1390  0.0839 - - -

12 - 0.1194 00802  0.0504 - -

14 00388 - 0.1046 . 00755  0.0505 - -

16 - 00930 00706 00503  0.0361 -

18 00302 . 00838 00659 00493  0.0359 -
.20 - 00762 00616 00479  0.0360  0.0283

Proceedmg along the lme of proof of Theorem 1, one can get the following
result. = - ’

Theorem 2. Let y —(yo,y,,. .¥:Y be the unique solution of (2.11) in
Ry, Then the vector

x. = ()’;» ceey y:y )’('), y:1 seey )’;» y;y wery )’: ’ )’(‘), y:’ veey y;)’ (2.12)

with v (= 4t+2 ) elements, belongs to T and represents the D- optxmal desxgn
measure for the estimation of Pr.

Remark 2. For odd m, Theorem 2 considerably sxmphﬁes the derivation
of the D-optimal design measure. Instead of (2 4), one needs to consider the

system of equations (2.11) involving t+1 =Z(V’+2) variables. We solved
(2.11) interatively for t = 1, 2, 3, 4 starting with the initial choice
yj=(4+2)"", 0<j<t. The solution, yielding the D-optimal design measure,
are shown in Table 1 for t=1, 2, 3, 4 (i.e., for v=6, 10, 14, 18).

2.3 Examples in the unblocked case

As the following examples reveal, the D-optimal design measures can yield
exact designs with very high D-efficiency. These exact D-efficient designs are
non-equireplicate and the gain, compared to corresponding equireplicate designs,
is not ignorable.

Example 1. Letn = 24, v = 8. From Theorem 1 and Table 1, the D-optimal
design  measure s given by  x"=(x],..,x3)’,  where
X] =X3= x5 =xg = 0.1652, x3=x}=xg=x7=0.0848. For 1<i<8, rounding
off nx; to the nearest integer, x* yields the exact design d, given by the vector

et ...
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of replication numbers ry=(4,2,2,4,4,2,2, 4). As before, let X" and R, be
diagonal matrices with diagonal entries given by the elements of x™ and r,
respectively. Then the D-efficiency of dj, measured as '

eff = {IPXY'PI/IP@'Ry) P11} 4 (2.13)

is as high as 0.9999. Also, the D-efficiency of the equireplicate design, relative
to dy and defined along the line of (2.13), equals 0.9149.

Example 2. Let n = 50, v = 10. The D-optimal design measure x*, obtained
from Theorem 2 and Table 1, yields the exact design d,, given by the vector

of replicaion numbers r1y=(7,4,3,4,7,7,4,3,4,7y. By (213), the
D-efficiency of d, equals 0.9982 while the D-éfficiency of the equireplicate
design, relative to d,, turms out to be 0.9106.

Example 3. Let n = 10, v = 6. Then no equireplicate design exists and,
as before, x* yields the exact design d, with ry=(2,1,2,2,1,2) and having
D-efficiency 0.9977. :

Remark 3. In each of the above examples the D-efficiency of d, is defined
with respect to a D-optimal design measure which is not actually attainable
in the corresponding exact setting. As such, even the very high figures for the
D- efficiency of dy, as reported above, are rather conservative and in some or

~all of the above examples d, may actually be D-optimal within the relevant

classes of exact designs.

Remark 4. Following Mukerjee and Gupta [8] one can check that in each
of these examples the D-efficient designs d, is also A-optimal for the estimation

of appropriately normed version of P 7 within the class of the designs mvolvmg
the same number of observations.

3. D-efficient Block Designs

Suppose now it is intended to conduct the experiment in b blocks each
of size k. As before, there are v=2m treatments. We work under the usual
fixed effects additive linear model with uncorrelated and homoscedastic errors
and denote the error variance by o> The approximate theory developed above -
can be utilized to obtain highly D-efficient block designs when the block size
is an integral multiple of 4. The approach is reminiscent of that in Mukerjee
and Gupta (8] in the context of A-optimality. First, given v, b, k, the replication
numbers are chosen as dictated by the D-optimal design measure and then

blocking is done in such a manner that P 7 is estimated orthogonally to block
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effects. Assuming that k is an integral multiple of 4, the constructional steps
are described below separately for even and odd m.

First let m = 2t, t>2.

Step 1. From Theorem 1 and (2.6), or using Table 71, obtain the D- optimal
design measure x* = (x], ..., Xy)".

Step 2. Fiﬁd positiv'e. integers r, ..., r, such that for 1<i<v, 1; is as close to
x; bk as possible subject to the conditions

5= Tnplj = T = Fomerp (1SjSO

Y, r;=bk
Let u; be the common value of 1, 1y, fy and Tpp,,; (1<j<t) and note

1
t — —
that 2, oj = 7 bk,

Step 3. Construct a design d involving t symbols, say d1» ... ¢, and b blocks
each of size -::k such that ¢J~ is replicated y; times in d, 1 <j<t.
Step 4. Finally obtain a design d, from d replacing the symbol o; in d by the
four treatments j,m+1—j, m+jand 2m+1-j, (1 <j<t).

Next let m=2t+1, t>1.

Step 1. From Theorem 2 and (2.11), or using Table 1, obtain the D-optimal
design measure x* = (x], ..., x}).

Step 2. Find positive integers ry, ..., r, such that for 1<i<v, r; is as close to

X; bk as possible subject to the conditions
5 = o1 = Tmaj = Domatojr (1SS0
rt“» = I'heq> the common value being an even number
I, r;=bk

Let u; be the common value of rj, fry_j, Iy and Dmei-p (1 <) and write

Tir1 = Tta ] =2u0. Then 2;=0 U = %bk.
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Step 3. Construct a design d involving t + 1 symbols, say g, ¢;, -+ » ¢, and

b blocks each of size %k such that ¢; is replicated vu; times ind, 0<j<t.

Step 4. Obtain a design dy from d replacing the symbol ¢q in d by the tWo '

treatments t+ 1 and m + t+ 1, each repeated twice, and for 1 <j<t, the symbol
o; in d by the four treatments j, m + 1—-j, m+jand 2m+ 1 —j, each repeated

once.

For m either even or odd, let N denote the incidence matrix of do. Then,
with R =diag(r},...,Ty), in view of (2.2), our construction ensures that
PR™! N =0, which is precisely the condition for estimation of P 7 orthogonally
to block effects; cf. Gupta and Mukerjee {5]. Hence under dy,
DiSp(P?) - g*PR™' P'. Thus, with reference to the estimation of P7, the
D-efficiency of -d, is given by (2.13) with n there replaced by bk. Unless bk
is too small, the proximity of r; to x; bk (1 <i<v), as stipulated in Step 2,
now ensures a high value for this D-efficiency.

‘In Step 3 of our construction, for m either even or odd, there is some

flexibility in the choice of the design d. We recommend that as far as practicable
d should be chosen as a connected design. Then d will also be connected -

see Mukerjee and Gupta [8] for a related discussion which is meaningful also
in the present context.

Example 4. Let v=12, b=3, k=8. After obtaining x" from Table 1 and
Theorem. 1, Step 2 yields (t},...,r,Y =G,2,1, 1,2,3,3,2,1,1,2,3). Hence
u,=3,u,=2u=1 and the blocks of d «can be taken as
{6, 0,3, {0, ¢, {90, ¢,} following Step 3. Finally by Step 4, d, is given

by the blocks (1,6,7, 12,2,5,8,11}, (1,6,7,12,2,5, 8,11} and
{1,6,7,12,3,4,9,10). By (2.13), the D-efficiency of d, is 0.9926. Using a

similar formula, it can also be seen that the D-efficiency of any ‘equireplicate
design, relative to d;, is at most 0.9141 in so far as the estimation of P T is

concerned.

Example 5. Let v = 10, b = 5, k = 8. After obtaining x", from Table 1
and Theorem 2, Step 2 yields (r,..,r)) = 6,3,2,3,6,6,3,2,3,6). Hence

u,=1, u1=6,uz=3 and starting from the design d with blocks {¢,,¢,}
{0,5 0o, {0} 0% {0, 0, {0, ¢,}, it is easy to construct the design d as in
Step 4. The D-efficiency of d is seen to equal 0.9925. One can also check
that the D-efficiency of no equireplicate design, relative to d,, can exceed
0.9158. g
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Remark 5. In each of the above examples, dy is connected and, following
Mukerjee and Gupta [8), A-optimal for P 1 within the class of designs with
the same v, b, k. Note that Remark 3, holds in the context of block designs
as well,
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